

Basics of Stereoscopic Displays Presented by Arthur L. Berman Analyst, Insight Media

12/02/08

Arthur L. Berman

The Goals of this Presentation

- Primary
 - Enumerate the principle means of producing electronic, 3D, moving images.
 - Briefly explain the configuration and principles of operation of each 3D technology.

• Secondary

- Summarize the characteristics, advantages and disadvantages of each technology.
- List the applications for which each technology is best suited.
- Present representative values of key specifications for each type of display.

Consider the Various Means to Produce a 3D Image

1. Stereoscopic

An independent image is presented to each eye through the use of some means of separation.

- Polarization of light
- Spectrum of light
- Spatial
- Temporally

Consider the Various Means to Produce a 3D Image

2. Volumetric

Volume filling. Each voxel emits visible light from the region in which it appears.

- Multiplanar systems
- Rotating systems
- Vibrating systems
- Other

Consider the Various Means to Produce a 3D Image

3. Holographic

Produces a free standing image.

4. "Hologram Like"

There are technologies that describe themselves and the image they produce as hologram like.

Two Direct View Displays - Physical Separation

Graphic Media Research PokeScope Pocket Stereoscope

Arthur L. Berman

Direct View

One Direct View Display - Active Gasses

- Two different eye perspectives are time sequentially presented on a direct view 2D display.
- The viewer wears "active" glasses in which the lenses are shutters.

One Direct View Display - Active Gasses

- The lenses switch between transmitting or blocking light.
- Lenses are usually some type of LCD.
- The opening and closing of the lenses is synchronized with the imagery.
- Glasses synchronized to display by IR link or can be tethered.

Direct View

One Direct View Display - Active Gasses

Stereoscopic - Direct View - One Direct View Display - Active Glasses		
Advantages of the technology	 Image resolution not reduced compared to 2D image Wide field of view Compatible with headtracking Allows for limited number of multiple viewers System can be switched to 2D eliminating the need for glasses 	
Disadvantages of the technology	 Sophisticated glasses are required Potential exists for flicker in some system designs Potential exists for ghosting in some system designs Inconsistent accommodation and convergence cues Reduced image brightness Provides only horizontal parallax 	
Principle applications	• Computer monitors	
Example product Company	CrystalEyesStereoGraphics Corp.	
Key specifications of example	 Glasses field Rate: 80 - 160 fields/second Glasses transmittance: 16% Glasses dynamic range: 1500:1 Emitter range: ~20 feet 	

Direct View

One Direct View Display with Active Polarization Switch - Passive Polarizing Glasses

- Two different eye perspectives are presented time sequentially on a direct view 2D display.
- A polarization switch is placed on the front of the 2D display screen.
- Output can be linearly or circularly polarized.

SID

STEREOSCOPIC Direct View

> One Direct View Display with Active Polarization Switch -Passive Polarizing Glasses

- The polarization of the transmitted image is switched synchronously with the imagery.
- Viewers wear passive polarizing glasses.
- CRT based technology is disappearing.

SID

Direct View

One Direct View Display with Active Polarization Switch -Passive Polarizing Glasses

Stereoscopic - Direct View -

One Direct View Display with Active Polarization Switch - Passive Polarizing Glasses

Advantages of the technology	 Image resolution not reduced compared to 2D image Adequate field of view Allows for limited number of multiple viewers System can be switched to 2D eliminating the need for glasses 	
Disadvantages of the technology	 Simple glasses are required Potential exists for flicker in some system designs Potential exists for ghosting in some system designs Inconsistent accommodation and convergence cues Reduced image brightness Provides only horizontal parallax 	
Principle applications	Computer monitors	
Example product Company	Monitor Z-Screen StereoGraphics	
Key specifications of example	 Light transmission: 16% including eyewear Field rate: 40Hz to 200Hz 	

Direct View

Dual LCDs - Passive Polarizing Glasses

Stacked LCD Displays

- Rear LCD panel controls the luminance. Includes two standard linear polarizers.
- Front LCD panel controls the polarization angle. No polarizers.

Direct View

Dual LCDs - Passive Polarizing Glasses

•Voltage on front panel is adjusted on a pixel-by-pixel basis to control polarization and, thus, direct correct light to correct eye. Viewer wears passive polarizing glasses.

•Two panels are aligned to a subpixel accuracy with ~1mm gap.

Direct View

Dual LCDs - Passive Polarizing Glasses

Stereoscopic - Direct View Dual LCDs - Passive Polarizing Glasses (Stacked LCDs)		
Advantages of the technology	 Image resolution not reduced compared to 2D image Wide field of view Compatible with headtracking Allows for limited number of multiple viewers System can be switched to 2D eliminating the need for glasses 	
Disadvantages of the technology	 Requires simple glasses Potential exists for ghosting in some system designs Inconsistent accommodation and convergence cues Provides only horizontal parallax 	
Principle applications	Computer monitors for games	
Companies	 iZ3D (Example is one product from this product line) Polaris • MacNaughton • Chi Mei Optoelectronics 	
Key specifications of example	 LCD size: 22" Display resolution: 1680 x 1050 Viewing angle: 120/90 Response time: 5 ms Brightness: 250 nit Contrast: 700:1 	

Direct View

Dual LCDs - Passive Polarizing Glasses

- Utilizes two identical direct view displays (set up to produce polarized light LCDs).
- The screens are oriented at an angle to each other with their pixel arrays accurately aligned.

Arthur L. Berman

Direct View

Dual LCDs - Passive Polarizing Glasses

- One screen displays a right eye perspective image, the other the left eye perspective image.
- A half silvered mirror is inserted between the two display screens bisecting the angle.
- The stereo mirror reflects one polarization and transmits the other.
- The viewer wears passively polarized glasses and sees a stereoscopic 3D image.

Direct View

Dual LCDs - Passive Polarizing Glasses

Stereoscopic – Direct View Dual LCD - Passive Polarizing Glasses (StereoMirror)		
Advantages of the technology	 All solid state system - no moving parts Full 2D display resolution, color pallet and contrast Flicker free Multiple viewers possible - limited by physical space 	
Disadvantages of the technology	Requires passive glassesLarge form factor	
Principle applications	• Satellite/aerial photogrammetry; medical imaging; computational chemistry; complex modeling visualization	
Companies	 SD2320W Planar Systems (Example drawn from this product line.) SevenData Omniatec 	
Key specifications of example	 Display resolution: 1920 x 1200 Palette: 16 million colors Stereo luminance: 150 cd/m² (through glasses) Response time: 12 ms (3 ms rise, 9 ms fall) Refresh rate: 60 Hz 	

SID

Direct View

One LCD with µPol Technology – Passive Polarized Glasses

- The right eye perspective image is presented on a flat panel LCD using the odd pixel rows.
- The left eye perspective image is presented on a flat panel LCD using the even pixel rows.

Direct View

One LCD with µPol Technology – Passive Polarized Glasses

- The "usual" LCD front polarizer sheet is replaced by a special polarizer sheet.
- It consists of an array of pixel wide polarizers stripes.
- The polarization states of alternate stripes are orthogonal to each other.
- The polarizer stripes are placed in careful alignment with the pixel rows.
- The viewer wears passive polarized glasses.

Direct View

One LCD with µPol Technology – Passive Polarized Glasses

Stereoscopic Direct View - One LCD with µPol Technology - Passive Polarized Glasses		
Advantages of the technology	 Adequate field of view Allows for limited number of multiple viewers System can be switched to 2D eliminating the need for glasses 	
Disadvantages of the technology	 Image resolution reduced by a factor of 2 compared to 2D image Simple glasses are required Potential exists for ghosting in some system designs Inconsistent accommodation and convergence cues Reduced image brightness Provides only horizontal parallax 	
Principle applications	Computer monitors Television	
Companies	 Pavonine SpectronIQ 3D Zalman Hyundai (One model used in the example below.) 	
Key specifications of example	 22 inch diagonal WSXGA+ resolution (1,680x1,050) Brightness level of 300cd/m² Contrast ratio of 1,000:1 Response time of 5ms 	

Projection

- The display source is a single projector with a single lens.
- Sequential frames in the projected image alternate between right eye and left eye perspectives.

- The projected image is unpolarized.
- The viewer observes the image on a conventional screen does not need to preserve polarization.
- Viewers wear active glasses.

Projection

- Most single 3D projectors are DLP based.
- 3D digital projectors based on LCOS microdisplays are also available.
- A single DLP projector can be used to produce a 3D rear projection TV.

Projection

Stereoscopic – Projection - Single Projector - Active Glasses		
Advantages of the technology	 Image resolution not reduced compared to 2D image Allows for multiple viewers System can be switched to 2D eliminating the need for glasses Large field of view 	
Disadvantages of the technology	 Sophisticated glasses are required Potential exists for flicker in some system designs Potential exists for ghosting in some system designs Inconsistent accommodation and convergence cues Reduced image brightness Provides only horizontal parallax but, in likely applications, not a problem 	
Principle applications	• Large venue presentation such as movies and conference room settings	
Companies	Galaxy product line Christie Barco	
Typical key specifications	Contrast ratio: 500:1 Transmission: 16% including glasses	

Projection

Single Projector with Active Polarization Switch -Passive Polarizing Glasses

- The display source is a single projector with a single lens.
- Sequential frames in the projected image alternate between right eye and left eye perspectives.
- A polarization switch is positioned at the output of the projection lens.

Projection

Single Projector with Active Polarization Switch -Passive Polarizing Glasses

- Synchronously with the imagery, the linear (or circular) polarization of the transmitted image is switched.
- The screen must preserve the polarization of reflected light.
- The viewers wear passive polarizing glasses.

Projection

Single Projector with Rotating Polarization Switch – Passive Polarizing Glasses

• Similar principle but the polarization switch is two segment mechanical rotating filter.

Projection

Single Projector with Active Polarization Switch -Passive Polarizing Glasses

Stereoscopic - Projection Single Projector with Active Polarization Switch - Passive Polarizing Glasses		
Advantages of the technology	 Image resolution not reduced compared to 2D image Allows for multiple viewers System can be switched to 2D eliminating the need for glasses Large field of view 	
Disadvantages of the technology	 Simple glasses are required Potential exists for flicker in some system designs Potential exists for ghosting in some system designs Inconsistent accommodation and convergence cues Reduced image brightness Special polarizing conserving screen is required Provides only horizontal parallax but, in likely applications, not a problem 	
Principle applications	Large venue presentation such as movies and conference room settings	
Companies	RealD Masterimage NEC Barco Christie	
Typical key specifications	Contrast ratio: 100:1 Transmission: 16% including glasses	

Projection

Dual projector - Passive Polarizing Glasses

- Two projectors: one produces the left hand perspective imagery, the other the right hand imagery.
- Filters are positioned on the projectors so that they output linearly (or circularly) polarized light.

Arthur L. Berman

Projection

Dual projector - Passive Polarizing Glasses

- The projector producing right hand imagery has (for example) a vertical axis of linear polarization.
- The projector producing the left hand imagery has a horizontal axis of linear polarization.
- The screen must preserve the polarization of reflected light.
- The viewers wear passive polarizing glasses.

Projection

Dual projector - Passive Polarizing Glasses

Stereoscopic – Projection - Dual Projector - Passive Polarizing Glasses			
Advantages of the technology	 Image resolution not reduced compared to 2D image System can be switched to 2D eliminating the need for glasses Good field of view Supports multiple viewers 		
Disadvantages of the technology	 Simple glasses are required Special polarizing conserving screen is required Potential exists for ghosting in some system designs Image brightness is reduced Inconsistent accommodation and convergence cues Potential exists for imperfect synchronization and alignment of images 		
Principle applications	• Large venue presentation such as movies and conference room settings		
Example product Company	Barco Mechdyne NEC IMAX Panasonic	Fakespace Sony Christie JVC	
Key specifications of example	Contrast ratio: 100:1Transmission: 19% including glasses		

Direct View

Passive Chromatic Glasses

Anaglyphic

- The 2D display presents sequential frames that contain, for example, first a blue left eye image and then a red right eye image.
- The viewer wears glasses with passive red/blue lenses.
- Compatible with existing display systems.

Direct View

Passive Chromatic Glasses

ColorCode 3-D

- Red and Green (Yellow) to one eye. Blue to the other eye.
- A horizontal displacement is introduced between the red and blue images.
- The viewer wears passive yellow/blue glasses.

Direct View

Passive Chromatic Glasses

• Allows the use of any color at any depth plane in the system. Essentially, the system creates a nearly full color image for one eye and a shifted monochrome image for the other eye.

Direct View

Passive Chromatic Glasses

Eclipse 3D

- Full color image to one eye and a monochrome image to the other eye.
- Monochrome image can be red or yellow, but must be spectrally distinct from full color image.
- The images are viewed with colored filter glasses.
- When one eye views the full-color image and the other eye views the monochrome image, the mind perceives a full-color 3D image.

Direct View

Passive Chromatic Glasses

- The color comes from the fullcolor image. The depth comes from the monochrome image.
- Can be done with a 4-segment color wheel. (BrilliantColor with narrow band yellow instead of the broadband yellow.)
- 4 different color LEDs.
- Approach is not backward compatible with either the transmission channels or current display technology.

Direct View

Passive Chromatic Glasses

Stereoscopic - Direct View - Direct View - Passive Chromatic Glasses (ChromaDepth)		
Advantages of the technology	 Multi viewer Wide field of view 2D compatible 	
Disadvantages of the technology	 Color can not be arbitrary when conveying a specific depth position Limited to 3 depth planes on most electronic displays Requires glasses, although they are simple and low-cost Color fringing 	
Applications best suited to the technology	 Applications where attention getting is more important than image quality. Works best in print and film, can also be used on electronic displays 	
Principle companies developing the technology	 American Paper Optics (Purchased Chromatek in 2003.) nWave (ColorCode) 	
Potential for system performance improvements	Use of multiple primary color displays	
System pricing	Disposable glasses are low cost (under \$1 each in low volume as low as an estimated \$0.10 in a volume of 10's of millions)	

Single Projector

Passive Chromatic Glasses

Anaglyphic

- One projector produces sequential frames that contain, for example, first a blue left eye image and then a red right eye image.
- The viewer wears glasses with passive red/blue lenses.

Glasses with red and blue lenses

Single Projector

Passive Chromatic Glasses

Infitec/Dolby approach

- Rotating mechanical filter has two areas.
- Spectrum transmitted by one filter (R1, G1, B1) differs slightly from that transmitted by the other filter (R2, G2, B2).

Single Projector

Passive Chromatic Glasses

- Full color image produced for both eyes.
- A horizontal displacement is introduced between the images.
- The viewer wears passive glasses.

Dual Projector

Passive Chromatic Glasses

Anaglyphic

- One projector produces, for example, a blue left eye image and the other projector produces a red right eye image.
- The viewer wears glasses with passive red/blue lenses.

Dual Projector

Passive Chromatic Glasses

Infitec

- One projector produces a right eye image with a spectrum (R1, G1, B1)
- The second projector produces a left eye image with a spectrum R2, G2, B2.
- Both eyes see full color images. They are slightly different and this is digitally corrected.
- The viewer wears passive Infitec filter glasses.

Dual Projector

Passive Chromatic Glasses

Stereoscopic – Dual Projector - Dual Projectors - Passive Chromatic Glasses (Infitec)	
Advantages of the technology	 Image resolution not reduced compared to 2D image System can be switched to 2D eliminating the need for glasses Good field of view, allows head tipping Supports multiple viewers No special screen required – allows display mobility Flicker free
Disadvantages of the technology	 Requires simple but expensive glasses Image brightness slightly reduced Potential problem in producing balanced, full color images Inconsistent accommodation and convergence cues Potential exists for imperfect synchronization and alignment of images in 2 projector systems
Principle applications	• Large venue presentation such as movies and conference room settings
Companies	Galaxy + Infitec product lineBarco
Typical key specifications	 Contrast ratio: 10,000:1 Transmission: 13% including glasses for two 3-microdisplay DLP projectors

- When operated in the 3D mode, each eye is exclusively presented a single perspective image.
- Head gear is available based on variety of microdisplay technologies.

I-O Display Systems i-Theater (HTPS)

I-Glasses PC HR (LCOS)

eMagin Z800 3DVisor (OLED)

Stereoscopic - Head Mounted Displays	
Advantages of the technology	 Image resolution not reduced compared to 2D image Wide field of view Compatible with headtracking System can be switched to 2D
Disadvantages of the technology	"Cumbersome" eyewear requiredPotential for ergonomic problems
Principle applications	Virtual realityVideo games
Example product Company	 I-Glasses PC HR I-O Display Systems
Key specifications of example	 Resolution: 800 x 600 Field of view: 26 degrees diagonal Refresh rate: 100 Hz Virtual image size: 70 inches at 13 feet Color depth: 24 bit input

Multiview

Parallax Barrier

- The right eye perspective image is presented on a flat panel display utilizing (for example) only the odd pixel columns.
- The left eye perspective image is presented on the even pixel columns.
- Resolution is cut in half.

Multiview

Parallax Barrier

- A clear sheet containing a series of narrow, linear, opaque stripes - a parallax barrier - is placed in front of the display.
- The "geometry" is such that a viewer sees the right eye pixel columns with the right eye from some viewing angles but not from others. The same is true for the left eye pixel columns.

Multiview

Parallax Barrier

- The horizontal distance between right eye and left eye diamond areas corresponds to the spacing between human eyes, about 21/2".
- When properly positioned within the viewing zone, the right eye of a viewer will see only the right eye pixel columns and a right eye perspective. The left eye will see only the left eye pixel columns and a left eye perspective.

Insight Media

• Provides a single viewer 3D "sweet spot".

Parallax Barrier

- Two-view products available from Pavonine, Tridelity, Dimension Technologies
- Multi-view products available from Spatial View, NewSight, Tridelity.

Multiview Lenticular

- A lenticular sheet contains a linear array of narrow cylindrical lenses is placed in front of the LCD.
- The lenses direct light from the image to different areas in the viewing zone.

- Two view products available from Spatial View/SeeFront
- Multi-view products available from Philips 3D, LG Electronics, NEC, Samsung, Alioscopy

Multiview

Parallax Barrier

Stereoscopic – Multiview - Parallax Barrier (Sharp Switchable)	
Advantages of the technology	 All solid state systems - no moving parts Viewable by a limited number of simultaneous users System can be switched to 2D Autostereoscopic - no glasses required
Disadvantages of the technology	 Restricted head box Cross talk can degrade image quality Only provides horizontal parallax 3D resolution is reduced from 2D resolution Text distorted in 3D mode
Principle applications	AdvertisingMonitors, TV
Example product Company	LL-151-3D monitorSharp
Key specifications of example	 Contrast ratio: 500:1 Response time: 23 ms Resolution: 1024 x 768 Viewing angle: 130° horizontal, 115° vertical (to CR 10:1) Brightness: 370 cd/m² (2D mode), 140 cd/m² (3D mode)

- A 3D view is created by imaging a series of 2D image slices into a 3D projection volume.
- The projection volume is composed of a physically deep stack of independently addressable layers.
- At any instant in time, one layer displays a 2D image and all other layers are transparent.
- Since each image slice is produced in the display volume at the correct depth, a 3D image is produced.

VOLUMETRIC Multiplane

Volumetric – Multiplane - DepthCube		
Advantages of the technology	 All solid state system - no moving parts Autostereoscopic No headtracking required Viewable from an arbitrary distance Viewable by a limited number of simultaneous viewers Parallax can be produced in both X and Y 	
Disadvantages of the technology	 Response time limited, not truly suitable for virtual reality. Field of view restricted to front only Slight residual haze from transparent layers "Translucent" image 	
Principle applications	Computer aided engineering and computer graphics	
Example product Company	DepthCube z1024 3DLightSpace Technology, Inc.	
Key specifications of example	 15.7" x 11.8" x 4.0" deep image volume (19.6" front diagonal) 90° field of view 15.3 million voxels 1024 x 748 transverse pixels x 20 depth planes 32,768 colors (15 bits) 50 Hz refresh rate (100 Hz interlaced) >20 Hz 3D image update rate 	
	55	Insight Me

DISPLAY INTELLIGENCE"

Projection on to a Rotating Plane

• A sequence of 2D image "slices" are projected onto each side of a rotating, semi-transparent diffuser screen.

Layout of projector and optical assembly

Schematic

Perspecta 1.9 display

VOLUMETRIC Rotating

•The spatial position of the emanating voxel is determined by the momentary location of the light beam's intersection with the rotating, screen.

•The projector is based on a 3 chip DLP light engine.

VOLUMETRIC Rotating

Volumetric – Rotating - Projection on to a Rotating Plane (Perspecta)	
Advantages of the technology	 Convergence and accommodation consistent No glasses required Multi viewer capable Full motion parallax 360° view ability
Disadvantages of the technology	 Mechanical system "Haze" from the rotating screen "Translucent" image Limited color bit depth
Principle applications	• Medical imaging, the earth sciences (oil and gas), and consumer electronics
Example product Company	Prespecta 1.9Actuality Systems, Inc.
Key specifications of example	 Image size: 10" diameter spatial 3D imagery Field of view: 360° horizontal, 270° vertical Resolution: 198 slices, 768 x 768 pixels/slice

VOLUMETRIC Rotating

Rotating LED Array

- An XY array of LEDs is rotated about a vertical axis.
- The screen is invisible to viewers because of its' high rotation speed.
- The position in which the LEDs are activated and the LEDs luminescence and duration are computer controlled.
- Low resolution versions of this type of display are currently used in toys, clocks and as "attention getters."

VOLUMETRIC Vibrating

- An example of this approach was the SpaceGraph 3D Display.
- Note that varifocal techniques are not strictly volumetric in as much as they produce virtual images.
- A thin aluminised mirror film is set into vibration by a loudspeaker.

VOLUMETRIC VIBRATING

- The surface of the mirror is essentially a sphere with a continuously changing curvature.
- When an observer views the face of a CRT by reflection in the mirror, the changes in curvature cause a corresponding change in the position of the reflected image.
- The result is an autostereoscopic image that is essentially a transparent stack of 2D images.

Real-time Holographic Display

DISPLAY INTELLIGENCE

- It is possible to replace film as the image recording medium with a 2D digital display.
- By illuminating the display, the holographic image can be created and, ultimately, animated.
- The extent of the computation required to convert a 3D scene into a hologram is very substantial.
- The state of the art is such that it is possible to commercially produce still images.
- High quality, real time holographic video is not yet commercially viable.

- The display reconstructs the light field of 3D scene instead of views.
- An array of projector modules is arranged behind a holographic screen.
- The image produced by a module is not a 2D view of the final image
- Rather, the light beams produced by the projection modules are determined by geometry.

- Each point on the screen is always contributed by many modules.
- Each point of the holoscreen is able to emit light beams of a different color and intensity in different directions.

SID HOLOGRAPHIC "LIKE"

Holographic "Like" 3D Display	
Advantages of the technology	 No glasses needed Motion parallax Multi viewer No positioning or head tracking applied
Disadvantages of the technology	Complex Expensive
Principle applications	• Medical, CAD, air traffic control, simulation, security, gas and oil exploration, entertainment, theme parks, scientific visualization.
Example product Company	HoloVizio product line 620 RCHolografika
Key specifications of example	 Aspect ratio:16:9 Screen size: 72" diagonal Resolution: 50.3 Mpixel Viewing angle: 50°-70° Colors: 16M (24 bit RGB)

Direct View or Projection

Pulfrich

- Retinal sensors require a minimum number of light photons to send a signal to the visual system.
- One eye is covered with a neutral density filter.
- Light from a scene will be slightly time delayed to the covered eye.
- Within a scene, the eye with the filter cover will see the position of an object in motion later than the uncovered eye.

Direct View or Projection

Pulfrich

- It follows that images perceived by the left and right eyes will be slightly different.
- The visual system will interpret the result as a stereo pair.
- Compatible with existing displays and transmission systems.

Direct View or Projection

Pulfrich

Pulfrich Based 3D Display		
Advantages of the technology	 Multi viewer Wide field of view 2D compatible 	
Disadvantages of the technology	Requires simple/cheap glassesMotion required for 3D effect	
Principle applications	• TV • Movies	

Projection Vibrating Slit

- A shutter is placed in front of the projector lens.
- The shutter consists of a series of individually addressable, vertical stripes.
- The shutter is made black except for a single, clear slit.
- The clear slit is electronically moved back and forth in the horizontal plane.
- The imagery alternates between right and left eye perspectives and is synchronized with the motion of the slit.

Projection Vibrating Slit

- A series of full resolution images are projected into space.
- Position in the viewing zone determines the pair of images seen by the viewer.
- This approach allows for: 3D motion parallax Side-by-side viewers to simultaneously watch different 3D programs.
- Products based on this technology are offered by Deeplight

Stereoscopic

Monocentric

- The main virtue claimed of this design approach is that it enables an autostereoscopic display with both a large viewing pupil and a wide field of view.
- The system has two independent optical paths sharing a single, large spherical mirror.
- The viewer looks into two "floating balls of light" that provide each eye a magnified virtual image of the systems two 17 inch LCDs image sources.

SID

OTHER TECHNOLOGIES

Stereoscopic

Monocentric

Stereoscopic

Monocentric

Other Technologies – Stereoscopic - Monocentric					
Advantages of the technology	 Autostereoscopic Large viewing pupil Large field of view 				
Disadvantages of the technology	• Physical form factor				
Principle applications	 Intensive visualization tasks Oil and gas exploration, molecular modeling, CAD, medical imaging. 				
Example product	• Prototype only				
Company	• Kodak				
Key specifications of example	 Field of view that measures 43° by 34° Resolution of 1280 x 1024 pixels. 40 mm viewing pupils Image brightness is about 125 nits 				

Direct View

Multi Layer LCDs

- Not true autostereoscopic 3D
- Comprised of two (or more) distinct layers of LCD panels of any size stacked on top of each other and sharing a common backlight.
- Each LCD receives independent control signals, through the coordination of the displayed images, a multi-layer visual display is presented.

Arthur L. Berman

SID

Integral Imaging

To record a 3D image

- A lenslet array is used to sample light rays coming from a scene.
- The result is a tremendous number of closely packed but distinct micro images.
- Each micro image contains information on the direction and intensity of the spatially sampled light.

Integral Imaging

To reconstruct the 3D image

- The set of 2D micro images are displayed in front of a lenslet array using a 2D display panel.
- There is one lenslet for every micro image in the integral image.
- Rays from the micro images travel through the lenslet array and converge to form a 3D real image.

Volumetric - Projection

Dual laser

- Two DLP projectors.
- Two infra red lasers having different wavelengths.
- Up-converting medium.
- Scanning is synchronized.

Volumetric - Projection

Free Space, Laser - Plasma 3D Display

- When a laser beam is strongly focused, plasma emission can be induced from the air near the focal point. This is called free space emission and is of one color.
- The laser produces nanosecond-long pulses of infrared light from a NdYAG laser at a wavelength of 1,064 nm.

Volumetric - Projection

Free Space, Laser - Plasma 3D Display

- One pulse is used for each dot in the image.
- By synchronizing the timing of the laser pulses with the direction of the focal point, an image consisting of 100 dots per second can be drawn in a 2D plane.
- Changing the focal point allows producing points in the third dimension.
- Galvanometric mirrors are used to direct the laser beam along the x and y directions.

- There are a lot of companies developing 3D technology.
- There are a lot of different types of 3D technologies.
- There are a lot of different types of 3D products.
- Each technological approach has a different set of advantages and disadvantages.

- Taken in conjunction with the fact that there are a wide range of 3D applications:
- The result is that there is not a single best approach to 3D but, rather, approaches that are better for given applications.
- Looking forward, business opportunities exist for many 3D companies and technologies.

Ευχαριστ	ú			SDAG شكريا	cibo	
Елагодаря		Insight Media		דה	תו	
ม อกษ์ เช		Norwalk CT 06851	0	谢谢 多 謝 дякую		
გმაღლობთ იადლობთ	abe (D	Arthur Berman an@insightmedia Direct tel) +00-020-04	.info 44			
Arigato	Que	estio	ns?	شکر أ Баярл	aa	
א דאנק אייך	Con	nmer	its?	धन्यवाय	r	
7	有難う	DanKe	Спаси	50		
rthur L. Pormon		84			Insight Media	

DISPLAY INTELLIGENCE"